

Integration in 2024 and

beyond
A view on integration in 2024 and beyond by the A-Team

May, 2024, Version 1

Copyright © 2024, Oracle and/or its affiliates

Public

2 Integration in 2024 and beyond / Version 1

 Copyright © 2024, Oracle and/or its affiliates / Public

Purpose Statement

This document provides an overview of the integration software domain in 2024. It is intended to help you

understand the integration pillars and overall domain in 2024 and into the future.

Disclaimer

This document is for informational purposes only and is intended as an opinion on our view of the state of the

industry in the integration domain. It is not a commitment to deliver any material, code, or functionality, and should

not be relied upon in making purchasing decisions. The development, release, and timing of any features or

functionality described in this document remains at the sole discretion of Oracle .

Revision History

DATE VERSION REVISION

May 2024 1 Initial publication

3 Integration in 2024 and beyond / Version 1

 Copyright © 2024, Oracle and/or its affiliates / Public

Table of Contents

Purpose Statement 2

Disclaimer 2

Revision History 2

Table of Contents 3

List of Figures and Tables 5

A. Overview 6

The Structure of This Document 6

About the Authors 6

B. Three Main Pillars of Integration 6

Application Integration 6

Data Integration 7

Process Integration 7

Other Areas: RPA—Robotic Process Integration 7

The Three Pillars and Our Focus 8

C. The History of Integration and the Trajectory in 2024 8

History 8

Manual Integration 8

Middleware 9

Messaging and Busses 9

Low Code 9

AI as a Helper 10

AI Driven 10

D. Application Integration—A Deeper Dive 10

Approaches to Application Integration 10

Integration Platform (iPaaS) 10

Build It Yourself 12

E. Process Integration—A Deeper Dive 13

Key Components in Process Integration 13

Upcoming Developments in Process Integration 15

Oracle Process Automation Cloud (OPA) 15

F. Trends and Themes in Integration 15

Deployment Trends 16

Prebuilt Integrations 16

Features in a Modern iPaaS Platform for Prebuilt Support 16

Advantages of Prebuilt Integrations 17

Disadvantages of Prebuilt Integrations 17

Hybrid and Multi-Cloud Integrations 18

Introduction 18

4 Integration in 2024 and beyond / Version 1

 Copyright © 2024, Oracle and/or its affiliates / Public

Hybrid Cloud and Multi-Cloud Environments 18

Challenges 18

Capabilities 19

Benefits 19

Development Trends 20

AI and Machine Learning 20

Introduction 20

AI Assistants and Generative AI 21

Some Tooling Examples Where AI is Being Used 21

Advantages of Using AI Tooling 21

Disadvantages of Using AI Tooling 22

Solution Consideration 22

API Driven Integration Development 22

Introduction 22

API Monetization 24

Advantages of API First Integration 24

Disadvantages of API First Integration 24

Solution Considerations 25

No-Code and Low-Code Development Environments 26

Introduction 26

Capabilities of Modern iPaaS Platform to Support Low Code or Drag &

Drop Features 26

Advantages of No-Code and Low-Code 26

Disadvantages of No-Code and Low-Code 27

Solution Considerations 27

Event-Driven Architecture 28

Introduction 28

Publish-and-Subscribe 29

Streaming (Produce/Consume) 30

Advantages of an Event-Driven Architecture 30

Disadvantages of an Event-Driven Architecture 31

Solution Considerations 31

Batch Architecture 32

Introduction 32

Tooling Examples 32

Advantages of Batch Architecture 33

Disadvantages of Batch Architecture 33

Solution Considerations 33

Data Integration vs. Application Integration When Considering Batch

Processes 33

5 Integration in 2024 and beyond / Version 1

 Copyright © 2024, Oracle and/or its affiliates / Public

Business to Business Integration (B2B) 34

Introduction 34

Advantages of Using iPaaS for B2B and Healthcare 34

Disadvantages of Using iPaaS for B2B and Healthcare 35

Solution Considerations for iPaaS B2B Capabilities 35

Solution Considerations for iPaaS Healthcare Support Capabilities 36

G. A Case Study—Fusion Applications Social Network Integration 36

Case Study Overview 36

Project Introduction 36

Problem Statement 37

Objectives 37

Methodology 38

Solution Overview 39

Relationship With the Whitepaper Trends 39

In Summary 40

H. Conclusion 41

List of Figures and Tables

Figure 1 - The progress of integration 8

Table 1 - Build or Buy Analysis for Prebuilt Integrations 18

Figure 2 - The progress of AI as it develops 20

Figure 3 - Microservice Architecture vs. Monolithic Architecture 23

Table 2 - Low-code vs. Middleware analysis 28

Figure 4 - Pub/Sub diagram 29

Figure 5 - Streaming diagram 30

Figure 6 - Batch architecture diagram 32

file:///C:/Users/C/Oracle%20Content/Team%20OraDocs/Integration%20in%202024/Integration%20in%202024.docx%23_Toc166750198
file:///C:/Users/C/Oracle%20Content/Team%20OraDocs/Integration%20in%202024/Integration%20in%202024.docx%23_Toc166750200
file:///C:/Users/C/Oracle%20Content/Team%20OraDocs/Integration%20in%202024/Integration%20in%202024.docx%23_Toc166750201
file:///C:/Users/C/Oracle%20Content/Team%20OraDocs/Integration%20in%202024/Integration%20in%202024.docx%23_Toc166750203
file:///C:/Users/C/Oracle%20Content/Team%20OraDocs/Integration%20in%202024/Integration%20in%202024.docx%23_Toc166750204
file:///C:/Users/C/Oracle%20Content/Team%20OraDocs/Integration%20in%202024/Integration%20in%202024.docx%23_Toc166750205

6 Integration in 2024 and beyond / Version 1

 Copyright © 2024, Oracle and/or its affiliates / Public

A. Overview

This paper is meant to provide a broad, 10,000-foot view of the world of integration in 2024 and beyond. We’ll be

exploring some trends in the industry as well as our view of the current trajectories in integration technology. We

include a contemporary use case study to help explore some of the decisions and choices that can be made to

accomplish a good integration solution today.

The Structure of This Document

This document is structured to present a summary on integration technologies, a brief history of integration, with

some look forward to new developments, a slightly deeper dive on our specialist integration pillars, then some trends

within the integration world and finally a deeper dive on a contemporary integration use case.

About the Authors

We are the A-Team, an Oracle SaaS expert knowledge team, specializing in integration technologies over the past 20

years or so. As Oracle veteran consultants, we obviously understand and acknowledge our biases regarding the

industry. However, we hope this document will prove of some utility even if you are not interested in Oracle products

directly.

B. Three Main Pillars of Integration

As integration has evolved, the industry has, in general, broken it down into three core pillars: Application

Integration, Data Integration, and Process Integration. They are related and often work together, and products can

often address integrations in two or all three pillars, but typically, each serves a different primary purpose. There are

also other areas that are sometimes labeled independently, though we usually consider them as part of one of the

primary pillars here.

Application Integration

Application Integration entails linking various software applications, services, or systems to facilitate smooth

collaboration. Within the realm of cloud computing, this process encompasses the integration of both SaaS

applications and a combination of SaaS and on-premise applications, amongst many integration scenarios, including

hybrid, multi-cloud, and traditional on-premise solutions.

Focus

The primary focus of Application Integration is to facilitate communication and interaction between disparate

applications (cloud and on-premise), allowing them to share data, functionality, and processes.

Components

Application Integration typically involves middleware, iPaaS (Integration Platform as a Service), APIs

(Application Programming Interfaces), message brokers, and other integration technologies to enable

communication and data exchange between applications.

Objectives

The main objective of Application Integration is to streamline business processes, improve operational

efficiency, enhance collaboration, and provide a unified user experience across multiple applications.

Examples

Examples of Application Integration include integrating CRM (Customer Relationship Management) systems

with ERP (Enterprise Resource Planning) systems, connecting e-commerce platforms with inventory

management systems, or linking a website with a payment gateway.

7 Integration in 2024 and beyond / Version 1

 Copyright © 2024, Oracle and/or its affiliates / Public

Data Integration

Data Integration involves combining data from different sources or formats to provide users with a unified and

consistent view of the data.

Focus

The primary focus of Data Integration is on harmonizing data from disparate sources, ensuring its

consistency, accuracy, and accessibility for reporting, analysis, and decision-making.

Components

Data Integration encompasses processes such as data extraction, transformation, and loading (ETL), data

replication, synchronization, and virtualization to integrate and manage data from various sources. These

things can be achieved using tools such as ETL tools and iPaaS.

Objectives

The main objective of Data Integration is to provide a unified, accurate, and consistent view of data across the

organization, enabling informed decision-making, better analytics, and reporting.

Examples

Examples of Data Integration include integrating data from multiple databases or data warehouses,

consolidating customer data from different sources into a single view, or aggregating sales data from various

retail stores.

Process Integration

Process Integration involves orchestrating and automating typically human-driven business processes across

different systems or applications to achieve seamless end-to-end workflow execution, incorporating both human and

automated elements.

Focus

The primary focus of Process Integration revolves around the seamless integration and enhancement of

business workflows, prioritizing streamlined execution and reducing the need for manual intervention.

Nonetheless, Process Integration primarily targets workflows that involve human participation, thereby often

leading to the management of long-running processes.

Components

Process Integration often involves workflow automation tools, BPM (Business Process Management)

systems, or integration platforms to model, automate, and monitor business processes.

Objectives

The main objective of Process Integration is to improve operational efficiency, reduce errors, enhance

collaboration, and accelerate time-to-market by automating and optimizing business processes.

Examples

Examples of Process Integration include filling out loan applications that involve approvals, automating order

fulfillment processes spanning multiple systems, integrating customer onboarding workflows across various

departments, or synchronizing inventory management processes with supply chain partners.

Other Areas: RPA—Robotic Process Integration

Robotic Process Integration is at the “join” between Application Integration and Process Integration. The goal is to

automate legacy systems that are typically intended to be human-operated, and APIs are not feasible. For us, it is

generally considered to be part of the Process Integration pillar.

8 Integration in 2024 and beyond / Version 1

 Copyright © 2024, Oracle and/or its affiliates / Public

The Three Pillars and Our Focus

To summarize, while Application Integration focuses on connecting disparate applications, Data Integration focuses

on harmonizing data from different sources, and Process Integration focuses on orchestrating and automating

business processes across systems. Together, these integration approaches play a crucial role in enabling

organizations to operate more efficiently, improve collaboration, and adapt to changing business needs. The evolving

landscape sees vendors and companies approaching these integration pillars in a very individual fashion, blurring the

lines between them. Frequently, the concepts and products associated with these pillars are interchangeable,

underscoring the interconnection and complexity of modern integration.

The focus of this whitepaper is trends, concepts, vision and use-cases in Application Integration and Process

Integration. A deep dive into Data Integration is a broad topic of its own and a different white paper.

C. The History of Integration and the Trajectory in 2024

History

Integration as a software domain has followed a clear trajectory over the past 30 years. Starting in the Data

Integration world, early Data Integration systems sought to try and merge multiple emerging data sources into a

cohesive unit using strategies such as ETL (extract, transform, load). Subsequently, as interconnectedness increased,

we saw the rise of application and Process Integration, with APIs being developed explicitly to facilitate inter-

operation between applications at the application layer rather than the data layer. The trajectory has been clear, and

new technologies continue pushing the integration domain forward.

Manual Integration

Manual integration is the oldest approach to integration. Bespoke point-to-point integration solutions have existed

since two applications wanted to exchange data and have been implemented in a variety of programming languages.

These early integration solutions were typically more focused on Data Integration than true Application Integration.

Modern manual integration has changed dramatically with the rise of cloud-native and cloud-first trends in the wider

software development industry. Manually built integrations can leverage and follow all the best practices in wider

software development and, as such, usually leverage either containerization platforms such as Kubernetes to create

container-based deployments or serverless infrastructures to provide fully cloud-native serverless implementations.

These technologies can be triggered automatically on demand or as part of a wider infrastructure as a service

solution, so they can be as “online” and responsive as any other Application Integration solution.

Figure 1 - The progress of integration

Manual
Integration

Middleware

Messaging
and Busses

Low Code

AI as a
Helper

AI Driven

9 Integration in 2024 and beyond / Version 1

 Copyright © 2024, Oracle and/or its affiliates / Public

Middleware

Application Integration was truly born with the rise of middleware platforms able to handle the nascent internet

technologies of 25 years ago such as SOAP. Platforms such as Oracle’s SOA Suite brought together many approaches

to Application Integration under a single middleware server, able to handle the demands of the emerging pillars of

Application Integration, as demonstrated in this excerpt from marketing for Oracle SOA Suite some 15 years ago:

Modularity

Enable organizations to develop and manage services and composite applications in a modular fashion. This

modularity supports reusability of components, making it easier and more cost-effective to design, deploy,

and maintain applications over time.

Standards-based

Industry-standard protocols and technologies ensure interoperability between disparate systems and

applications. This approach reduces vendor lock-in and facilitates easier integration with existing IT

infrastructure, regardless of the technology or platforms in use.

Efficiency and Scalability

Designed to improve the efficiency of IT operations and the scalability of IT systems, middleware supports

high-performance execution of services and composite applications, enabling organizations to handle

growing volumes of transactions and data with minimal impact on system performance.

Management and Security

Including comprehensive management and security features to monitor, manage, and secure services and

composite applications. This includes capabilities for service governance, lifecycle management, monitoring,

and security policy enforcement, helping ensure that deployments remain robust, secure, and compliant with

regulatory requirements.

Middleware is still highly relevant in 2024—most cloud-based technologies are based on an integration middleware

platform of some kind. Additionally, you can easily deploy and scale a middleware solution onto modern cloud

architectures such as Kubernetes if you need to access their capabilities. If you don’t want or need to control the

middleware platform for yourself, most cloud vendors offer an integration platform that is based on a middleware

software solution hosted directly from their cloud.

Messaging and Busses

The rise of middleware facilitated the consolidation of much integration into singular software platforms. This saw the

rise of “point-to-point” integration, then the event bus came along, and everyone jumped aboard. These days we see

a hybridization of many approaches—buses based on cloud streaming platforms, point-to-point and hub-and-spoke

“fan-out” styles.

Low Code

With the rise of middleware, there was a strong desire to push towards more accessible solutions for developing the

integrations themselves. Low-code solutions (long ago, some called these and similar low code platforms “4th

generation programming languages”) have often been mixed into an overall middleware platform solution—drag-

and-drop development accessible to so-called “citizen developers,” such as business analysts have been the mainstay

of integration development for many years now. Most cloud-based integration solutions offer a browser-based

integration development environment that is based on low-code principles. We explore some of the capabilities of

low-code solutions in the section No-Code and Low-Code Development Environments below.

10 Integration in 2024 and beyond / Version 1

 Copyright © 2024, Oracle and/or its affiliates / Public

AI as a Helper

AI helpers, or “co-pilots,” are a newly emerging field in software development, where the developer leverages some

kind of domain-specific large language AI model to generate software development artifacts in some fashion.

The problem of data mapping has been persistent throughout the history of integration development. It is easy for a

person to understand and recognize that “DOB” and “Date of Birth” are matching fields and should be mapped to one

another. It is much more challenging for development environments to handle this automatically during

development.

With large business objects with multiple nested hierarchies, the challenge gets complex and requires a lot of both

domain knowledge and skill to correctly implement, with potentially disastrous consequences when a critical field is

missed, for example. Arguably, most integration in the modern age really boils down to managing these complex

object mappings between disparate products and domains. Automation has long been available, but it has typically

used simple string pattern matching, which is weak and error prone. AI helpers are starting to emerge that are using

the power of tools such as Large Language Models to try and interpret and generate mappings and other integration

artifacts using AI trained on domain specific knowledge.

These have the potential to dramatically simplify the process of developing a complex integration.

AI Driven

The future of most software development seems to be that the software should ultimately be able to “develop

itself”—what this looks like is yet to be seen, but there are many future speculations on the evolution of AI tools and

co-pilots to get to the state that you don’t really “develop” software anymore, you would have a conversation with an

AI, and it would end up outputting a software artifact complete and ready to go.

D. Application Integration—A Deeper Dive

Application Integration refers to connecting and automating interactions between stand-alone components in a

larger application system. In contrast to business Process Integration, the systems being integrated are typically

computer applications or similar components.

Approaches to Application Integration

Integration Platform (iPaaS)

Integration Platform as a Service (iPaaS) is a fully featured integration platform suite. It provides several key features

to allow for comprehensive integration solutions. Much of this document will discuss these features and how modern

integration solutions can leverage them.

Key components of iPaaS

Cloud-Based Service

The migration to the cloud has seen most iPaaS services migrate to a cloud-based service—historically, you

would run a service on premises, but the advantages of cloud-hosted iPaaS are significant and have, for the

most part, supplanted on-premise solutions.

Standards-Based

iPaaS is typically based on industry standards such as REST and SOAP. BPEL was historically a standard for

implementation. However, the specification for BPEL has stagnated, and that is no longer a common offering.

Connectivity and Adapters

iPaaS platforms will typically provide a wide gamut of connectivity options, allowing for connections to a wide

variety of backend services in a standardized manner, with transformation capabilities built-in and resilience

11 Integration in 2024 and beyond / Version 1

 Copyright © 2024, Oracle and/or its affiliates / Public

to backend issues as part of the standard connectivity. Often, these connectivity options will be available via

an on-premise proxy agent as well, allowing for iPaaS to reach into an on-premise application without having

to expose the on-premise application to the internet or punch through a VPN or other network connection.

Auditability and Traceability

iPaaS platforms will offer comprehensive audit and tracing systems, allowing the efficient examination in

detail of how integrations are performing and what is doing what.

Control Plane and the Runtime

A key feature of almost all modern iPaaS is some sort of control plane. Control planes are usually the core

server component of an application or even a Process Integration platform. They allow for control of the

behavior of a system at runtime through various UI or API interactions. A well-featured control plane should

have:

 A properly secured UI for access.

 A properly secured API for controlling the runtime.

 Means to query the current state of integrations.

 Means to view the recent or even long-term history of an integration instance.

Scaling, Elasticity, and Resilience

A control plane and its associated runtime are usually the drivers of integration. To deal with a varying flow of

demand, elasticity is typically a requirement of the control plane. Elasticity is the ability of the control plane

to change its size, to cope with the current load imposed upon it. There are varying strategies for changing

the size of a control plane:

 Using standard cloud scaling mechanisms:

 Deploying an extra compute instance to accommodate the new load and removing it when the

load requirement is gone.

 Deploying additional CPU and memory capacity to accommodate.

 Migrating to a new instance with the new capacity requirement.

The size change, ideally, would be driven automatically by the control plane, based on parameters of the

current load, however, this could have side effects like additional costs, which means that manual scaling

might be more desirable—either by manually over allocating capacity to avoid “ramp-up” times, or by under

allocating to save costs at the price of performance or potentially integration failures. It should be noted that

automated ramp-up is typically accompanied by an automatic ramp-down—to preserve resources when the

load decreases.

Disaster Recovery

Typically, disaster recovery for iPaaS would be the capability for the integration platform to persist when a

primary hosting site goes offline for whatever reason (power failure of the data center, natural disaster, etc.).

This kind of capability is desirable to be built into the control plane and platform to allow all the integration

systems to fail over to an alternative site, either fully automatically or via a manual process as part of a wider

business continuity plan. There are usually business factors in play - an integration platform is only as

operational as the targets it is integrating, so disaster recovery, e.g., a data center power outage, might

involve failing over not just the integration platform but also all the integrated services. You should consider

control plane disaster recovery in the wider context of a business continuity or business recovery plan.

12 Integration in 2024 and beyond / Version 1

 Copyright © 2024, Oracle and/or its affiliates / Public

Upcoming Developments in iPaaS and Application Integration

AI Helpers

AI helpers are rapidly becoming part of Application Integration. For more details, see the AI and Machine

Learning trend discussion below.

Oracle Integration Cloud

Oracle Integration Cloud (OIC) is Oracle’s primary product offering in the iPaaS Application Integration pillar. It offers

many of the key components listed above and is considered a strong offering in the integration domain by

independent industry experts.

Build It Yourself

For more advanced development teams, Application Integration can be accomplished by using standard development

tools and practices, often leveraging flexible cloud-based deployment solutions, such as serverless or

containerization. This is obviously a much more complex proposition for most, but it can fit in better with a wider

overall development team.

Serverless Platforms

Serverless is a somewhat emerging development paradigm whereby a developer, by adhering to a simple API, can

create a code deployment artifact that is deployed into a cloud-hosted infrastructure elsewhere and triggered on

demand. It gets its name from the fact that no server is apparent, though it can be considered to behave as if it is

deployed on a more traditional server-hosted solution. Typically, serverless infrastructure involves the backend

creation of a container specification, along with some rules that cause the creation of the container and triggering of

the contained code, such as when an HTTP call is received matching a URI format for example. (There are many ways

a serverless container can be triggered, but the most common by far is the HTTP trigger).

Serverless and Integration

An integration driven by some kind of triggering action, such as an API call or an Event, could easily be implemented

as a serverless “function” of some kind, whereby the implementation invokes whatever associated integrated services

in response. This approach is surprisingly accessible and meets many of the standard needs of an iPaaS platform

with little of the associated overhead. It obviously requires developer skills and ongoing maintenance, which can be a

definite drawback.

Containerization
Containerization has been a standard cloud deployment model for some years now, with Kubernetes becoming the de

facto standard in containerized deployment infrastructure. If you want ultimate control over everything, packaging

your custom-built custom code into a Kubernetes cluster is unparalleled.

Containers and Integration

There is little specific about containers and integration. Many legacy on-premise integration platforms can be

deployed into a Kubernetes cluster, providing an unorthodox path from on-premises to the cloud if that is required.

Alternatively, your cutting-edge AI-generated integration code can be packaged and deployed into Kubernetes as

well. There really are no limits when it comes to containers.

Advantages of Build It Yourself Integration Solutions

Customization

There is unparalleled customization from building it yourself. Every aspect can be controlled to an exacting

degree.

Performance

It is unlikely that any iPaaS platform will match the performance of a bespoke point-to-point integration built

in Rust, C++, or another high-performance language.

13 Integration in 2024 and beyond / Version 1

 Copyright © 2024, Oracle and/or its affiliates / Public

Disadvantages of Build It Yourself Integration Solutions

There are many, many disadvantages to build-it-yourself solutions:

Development Costs

The bespoke Rust point-to-point integration will require a highly skilled developer familiar with the domain

specifics of all the integration endpoints, which is unlikely to be low-cost.

Maintenance

The bespoke Rust implementation will need to be maintained because all services change over time, and your

integrations must accommodate those changes in some way.

All the Usual Stuff You Get for “Free” With iPaaS

Scalability, auditing, disaster recovery, and elasticity will all need to be considered, configured, and

developed.

E. Process Integration—A Deeper Dive

Application Integration refers to connecting and automating interactions between stand-alone components in a

larger application system. When one of these stand-alone components is human, a different type of software product

is typically needed to support the use case. This type of product has typically been called Business process

management (BPM), Human Workflow, or Business Process Automation. We use the term Application Integration

for integration scenarios that only include system-to-system. We use the term Process Integration or business

Process Integration for integration scenarios that include both systems and human beings.

Enterprises need business Process Integration to automate and streamline human-related business operations.

Business process use cases are prevalent in all aspects of any enterprise. Process products have been used as a

stand-alone process platform and as extensions to enterprise applications.

A process platform also allows processes to interact with external systems. So, it bears many similar features to

integration in supporting system-system integrations. The main capability of a process platform, of course, is system-

human interaction. Process platform products usually offer basic features such as a low code development

environment in a web-based IDE and a standards-based process construct (e.g., BPMN). Like any other application

platform, process platforms have been evolving through the years based on new customer demands. The following

are some of the more advanced capabilities that are often key to a successful process implementation.

Key Components in Process Integration

Forms

HTML-based forms are the main user interface for interacting with process instances. Complex business

processes often involve complex data structures such as nested arrays. Process forms should be constructed

to represent a complex process data structure. In addition, the data set can be large, for ease of user, forms

should support dynamic interactive behavior such as conditionally hiding or displaying data depending on

user entries.

Form Rendering

Form rendering typically refers to the capability that a single definition of a form can be viewed differently in

different communication channels and devices, such as in computer browsers, email, mobile devices, and

messaging applications. For completed manual tasks in a process, form rendering may include the capability

of printing completed forms into PDF or other formats. This is often a requirement for record-keeping and

non-repudiation.

14 Integration in 2024 and beyond / Version 1

 Copyright © 2024, Oracle and/or its affiliates / Public

Process UI Page Integration

Business users prefer a single-entry portal to multiple disjointed applications for conducting their daily

business activities. Process UI integration allows process workspace pages to be integrated into other web

pages, allowing business users to work with multiple applications more coherently.

Customizable Calendar

Calendar is an important feature in business processes. A customizable calendar allows businesses to define

their work calendar. It also allows individual business users to create their work and time-off schedules. These

capabilities in a calendar are essential to the flexibility of task assignments.

Hierarchical Organizational Structure

A clearly defined organization hierarchy enables a process platform to create more sophisticated task

assigns, reassignments, and escalations based on every business’ unique organizational structure.

Human Task Life-Cycle Management

Human task life cycle management encompasses task creation, assignment, reassignment, update,

cancellation, and completion. Role-based task assignment is a basic feature in a process platform. Complex

business processes often require more comprehensive features. More advanced features include hierarchical

task approval and escalation based on organizational structure, group task assignment, and group task

completion.

APIs for Managing Human Tasks

The availability of APIs for managing human tasks allows process capabilities to be integrated into other

applications. It also allows developers to extend a process platform by developing additional process

functionality they require. Some examples of such extensions may include bulk task approval and custom

task search capability.

Batch Operations on Human Tasks

Batch operations on human tasks allow a business user to select multiple assigned tasks and act on them at

once rather than individually. The feature greatly improves efficiency in working with a large number of

processes.

Structured and Unstructured Processes

In a structured business process, steps and transitions between steps are clearly defined. However, in some

scenarios, transitions between steps are more complex and may require a large number of conditions to

determine the next step. Using a structured process construct to implement complex transition rules can lead

to an unmanageable process application. In these scenarios, unstructured processes may help reduce the

complexity. An unstructured process leverages the concept of stages to group one or more tasks. Rules can

be defined to govern the transitions from one stage to the next. Milestones can be added to unstructured

processes to indicate the progress of process instances. Unstructured processes can simplify complex

processes and improve business process visibility.

Business Rule Services

Business rule services allow a process platform to externalize complex conditional tests and, thus, improve

process modularity and manageability.

Alter Flow by Manual Intervention

Manual alter flow allows a user to manually change the flow of the running process instances. Such alteration

may include skipping the following steps or going back to a previous step. This feature can be essential in

managing business process exceptions.

15 Integration in 2024 and beyond / Version 1

 Copyright © 2024, Oracle and/or its affiliates / Public

Process Versioning

Process versioning allows multiple process versions to be active in the same runtime environment. Business

processes can be long-running. The process versioning feature gives process administrators the ability to

create business process upgrade strategies. It ensures minimum interruption to existing business process

instances due to upgrades.

Process Correlation

Process correlation is a technology feature that allows developers to create decoupled processes and enable

decoupled processes to have a one-on-one message exchange. This feature can simplify process

implementation in many use cases.

Analytics for Process Visibility

Collectively, business process instances embed some critical information about business operations.

Providing visibility into the business process instances is key to the success of large process

implementations. Out-of-the-box analytics support of a process platform includes basic UI for high-level

process view in pre-defined charts and tables, and the ability to search for process instances based on

process instance metadata as well as payload data. Equally important for a process platform is to be able to

export a customizable set of process instance data into external systems so that they can be processed by

other applications.

External Service Integrations

Integrating with external services extends a process platform’s reach into new areas. RPA (Robotic Process

Automation) has been commonly used to automate existing manual UI-based applications. The data that an

RPA tool extracts from legacy applications can be used to trigger business processes. In turn, business

processes can feed data into legacy applications via RPA. Combined with the emergent AI-based services

such as document processing services, a process platform can automate a wide range of manual tasks

previously not possible.

Upcoming Developments in Process Integration

AI helpers

The evolution of AI helpers is changing all facets of integration and Process Integration is no exception. For

more information see the AI and Machine Learning trend discussion below.

Ad-hoc Human Tasks

This is an emerging feature in process platforms. Ad-hoc human tasks are created via an API. They are stand-

alone and live outside of a process. Though not widely used currently, this feature should extend the reach of

human tasks into new use cases.

Oracle Process Automation Cloud (OPA)

OPA is Oracle’s current offering in business process automation. It supports most of the features mentioned above

and is adding new features in every future release. In addition, OPA supports out-of-the-box integration with OIC.

Many Oracle SaaS modules, such as HCM, provide out-of-the-box integration with OPA as an extension mechanism

for enterprise applications. These features make OPA a key differentiator from other process platforms.

F. Trends and Themes in Integration

There are several common trends and themes across modern integration solutions. Some are part of the ongoing

trajectory of integration as a domain, others are interesting new facets of integration, but they generally fall into two

arenas: Deployment Trends and Development Trends. Deployment trends are focused more on how to take your

integration and “deploy” it to become a production service available for use. Development trends are more focused

16 Integration in 2024 and beyond / Version 1

 Copyright © 2024, Oracle and/or its affiliates / Public

on the ways you develop your integration, from how the code is developed to paradigms in software development

itself.

Deployment Trends

Hosting, deploying, and generally running your integration has many facets. Here, we will review two integration

deployment-focused trends.

Prebuilt Integrations

Hybrid and Multi-Cloud Integrations

Prebuilt Integrations

Introduction

In the ever-evolving landscape of digital business, where organizations embrace a multitude of diverse and

specialized applications to address their unique business needs, managing the seamless communication and data

flow between these applications has become imperative. This section delves into the strategic concept of prebuilt

integrations.

Enterprises find themselves relying on an array of applications to streamline operations, manage data, and enhance

business efficiency. However, the inherent diversity of these applications often results in siloing of data and

fragmentation of workflows. To address this challenge, a robust integration architecture is essential, acting as the

bridge to span these gaps and create a cohesive IT ecosystem.

At the forefront of addressing these integration needs is the concept of ready-to-use integrations, commonly known

as prebuilt integrations. This encompasses readily available integrations that can be implemented without the need

for extensive customization or development effort. It includes both prebuilt integration solutions and prebuilt API

connectors, with the integration process typically involving a drag-and-drop low-code implementation for predefined

processes.

Benefits
Enterprises benefit from prebuilt integration solutions, pre-packaged integration frameworks meticulously designed

to handle a standard integration task specific to an industry or use case. These solutions come equipped with built-in

features and functionality directly from the vendor, empowering organizations to integrate systems and applications

rapidly and seamlessly without the burden of extensive development, configuration, or customization. Upon

implementation, these solutions stand ready for immediate utilization, providing organizations with on-the-fly

integration capabilities to address common business needs. A fully featured Integration Platform as a Service (iPaaS)

platform should offer a vast library of prebuilt integrations tailored for standard use cases across various business

applications.

Features in a Modern iPaaS Platform for Prebuilt Support

Marketplace

A key capability of iPaaS platforms is to provide a marketplace for publishers and consumers. A marketplace

provides a means to connect potential consumers of prebuilt integrations with the developers and publishers

who are building them.

Monetization

Another key capability is the ability for publishers and developers to monetize the artifacts they produce.

Developing and publishing prebuilt integrations takes time and effort, so there needs to be a means to

17 Integration in 2024 and beyond / Version 1

 Copyright © 2024, Oracle and/or its affiliates / Public

reward those who create prebuilt integrations. A platform should have capabilities to help creators monetize

the assets they publish to the marketplace.

Template-Based Integration Workflows

iPaaS platforms enable organizations to leverage prebuilt integration templates or workflows. These

templates encapsulate best practices and proven integration patterns, empowering businesses to kickstart

integration projects quickly and efficiently.

Flexibility and Customization

While iPaaS platforms can provide template-based integration workflows leading to prebuilt integrations,

they should also provide capabilities to customize these prebuilt integrations for organizations to align with

their specific requirements. A prebuilt is unlikely to cover 100% of a use case.

Advantages of Prebuilt Integrations

Accelerated Implementation

By leveraging prebuilt integration components, organizations can significantly reduce the time and effort

required for integration projects. This enables faster deployment of new applications and features. Prebuilt

integrations enable organizations to achieve faster deployment of their required integrations. With pre-

configured settings and connectors, businesses can save valuable time and effort that would otherwise be

spent on developing and implementing complex integration solutions from scratch.

Cost-Effective Solutions

Prebuilt integrations minimize the need for custom development, leading to cost savings in terms of both

time and resources. Organizations can allocate their budget more efficiently, focusing on innovation rather

than repetitive integration tasks.

Improved Agility

The modular nature of prebuilt integrations allows organizations to quickly adapt to changing business

requirements. New applications can be seamlessly integrated without disrupting existing workflows,

enhancing overall business agility.

Reduced Maintenance Overheads

As prebuilt integrations are standardized and tested, ongoing maintenance becomes more straightforward.

Updates and changes to integrated applications can be managed more efficiently, reducing the risk of

downtime and operational disruptions.

Disadvantages of Prebuilt Integrations

Missing Customization Options

Prebuilt integrations need to provide all the customizations you require for your integration scenario. If some

critical customization is missing, avoiding the prebuilt entirely may make the implementation significantly

easier. However, this is often a difficult assessment to make during a tight development deadline.

18 Integration in 2024 and beyond / Version 1

 Copyright © 2024, Oracle and/or its affiliates / Public

Build or Buy Analysis for Prebuilt Integrations

Table 1 - Build or Buy Analysis for Prebuilt Integrations

Prebuilt Integration Custom Integration

Cost  Lower costs  Higher Costs

Resources  Lower resource requirement  Higher resources requirement

Timelines  Faster Implementation and time to delivery  Slower implementation and time to

delivery

Maintenance  Easy to maintain and upgrade

 Integrations are managed by Vendors so less

need of dedicated teams

 Manual updates requiring time,

money and resources

 Integrations managed by customer

Hybrid and Multi-Cloud Integrations

Introduction

Modern businesses find themselves invested in both on-premises and cloud, requiring iPaaS solutions that can

seamlessly bridge diverse ecosystems. Additionally, vendor lock-in is still widely considered an anti-pattern in

business, so iPaaS systems should be able to connect between cloud providers. Therefore, hybrid and multi-cloud

connectivity with iPaaS has become a pivotal strategy for organizations aiming to optimize their IT infrastructure,

enhance flexibility, and streamline business processes. For this, the iPaaS systems must possess the agility to connect

with applications dispersed across the digital realm. This section delves into the challenges, capabilities, and benefits

of iPaaS hybrid and multi-cloud strategy.

Hybrid Cloud and Multi-Cloud Environments

Hybrid Cloud

Refers to the combination of on-premises infrastructure with cloud services. It allows organizations to

leverage the benefits of both private and public clouds while maintaining control over sensitive data.

Multi-Cloud

Involves the use of multiple cloud service providers to meet specific business needs. This strategy mitigates

vendor lock-in, enhances redundancy, and provides access to a broader range of services.

Challenges

There are several key challenges in providing hybrid and multi-cloud solutions for both product vendors and

businesses requiring this capability.

Diverse Ecosystems

Organizations often face challenges in integrating diverse applications, systems, and data sources spread

across hybrid and multi-cloud environments.

Data Silos

Siloed data in different clouds can hinder collaboration and decision-making processes.

Security and Compliance

Ensuring secure and compliant data transfer between on-premises and cloud environments is a top concern.

19 Integration in 2024 and beyond / Version 1

 Copyright © 2024, Oracle and/or its affiliates / Public

Capabilities

An Application Integration offering that supports hybrid and multi-cloud requires several key capabilities; otherwise,

an effective implementation is unlikely.

Connectors and Adapters

Connectors, also known as Adapters, are specialized software components provided by the iPaaS system that

provide a predefined interface to interact with a specific application or service. They encapsulate the

intricacies of API calls and data exchange to a remote service, either a cloud service or other application,

simplifying the development of integrations.

IPaaS systems typically have a broad suite of connectors or adapters for many different cloud systems, from

databases to SaaS applications to social platforms and more.

Prebuilts

Prebuilt integrations can simplify the connection between different applications and cloud vendors but are

not a necessary requirement of hybrid and multi-cloud integration.

They are particularly useful for commonly used software applications, such as popular CRMs, ERPs, or other

SaaS cloud services, where prebuilt connectors are readily available. For more refer to the Prebuilt

Integrations trend discussion above.

On-Premise Connectivity Without Network Configuration Changes

IPaaS systems need to have capabilities to connect to on-premise applications and data. This needs to be

accomplished securely without requiring the customer to change their network configuration to allow the

cloud to access the on-premise components or expose the on-premise components to the Internet in any

typical fashion.

The details of how this is accomplished are typically vendor-specific, but hybrid cloud is typically very

challenging without such a capability.

Security

As iPaaS facilitates connections with various cloud vendors, it is crucial for its security features to seamlessly

integrate with diverse security mechanisms. Additionally, the iPaaS system should support functionalities

such as token exchanges, identity propagation, OAuth, and similar mechanisms.

Benefits

The benefits of using an iPaaS platform to deliver a hybrid or multi-cloud solution are several. It can be worth the

additional development effort.

Connectivity

iPaaS acts as a middleware, providing connectors, adapters and prebuilt integrations that simplify the

connectivity between diverse systems and applications.

Flexibility

iPaaS allows organizations to adapt to changing business requirements by providing a scalable and flexible

integration solution.

Automation

iPaaS automates workflows and data flows, reducing manual intervention and improving operational

efficiency. IPaaS in multi-cloud Allows a process orchestration to be executed anywhere. One step can be

performed on-premise and another in the cloud even if they are part of the same orchestration.

20 Integration in 2024 and beyond / Version 1

 Copyright © 2024, Oracle and/or its affiliates / Public

Single View

A hybrid or multi-cloud IPaaS should offer a single visual view of a process that may be distributed across

several clouds and on-premise platforms, reducing the management complexity and improving the audit trail

presentation of the process in a multi-cloud environment.

Development Trends

Developing your integration solution is critical to the success of an integration project. The means to develop

integrations are manyfold. Here, we will look at some existing and emerging trends in integration.

AI and Machine Learning

API Driven Integration Development

No-Code and Low-Code Development Environments

Event-Driven Architecture

Batch Architecture

Business to Business Integration (B2B)

AI and Machine Learning

Introduction

Artificial Intelligence (AI) is an emerging technology across the development industry. It uses advanced compute

models to try and replicate or even improve upon human intelligence in some fashion. It has become rapidly adopted

across the software industry to accelerate many facets of software development. It is especially potent at enhancing

efficiency and decision-making in the presence of significant data volumes. It is being rapidly adopted across diverse

Figure 2 - The progress of AI as it develops

Artificial
Intelligence

Machine
Learning

Deep
Learning

Generative
AI

Learning algorithms begin to imitate some

facets of human intelligence

Machine algorithms can learn from

historic data

Neural network algorithms allow for

predictive generation

Adversarial network techniques facilitate

self-generating output

21 Integration in 2024 and beyond / Version 1

 Copyright © 2024, Oracle and/or its affiliates / Public

industries like manufacturing, retail, customer service, transportation, agriculture, and supply chain. The prevalence

of AI is expected to grow further, bringing transformative change to the industry.

Generative AI is a novel emerging capability, able to create new content by extrapolating from its training data. This

technology enables organizations to summarize documents, construct tables, generate meaningful text, produce

code, and synthesize ideas, offering a new level of creative and productive capabilities.

AI Assistants and Generative AI

Much effort is being focused on incorporating AI assistance into software products like iPaaS to assist in the

development process. Future developments include the capability to generate whole integrations from simple

descriptive statements without coding.

AI and ML-Assisted

Integration platforms started incorporating AI and ML to assist developers in the design and implementation

process. This involved providing suggestions and guidance based on common patterns, reducing the manual

effort required. Machine learning algorithms could analyze historical data and recommend optimal

mappings, transformations, or error-handling strategies. For example, Dell Boomi Suggest recommends

automatic mapping between source and target nodes with high, medium, and low confidence scores; we

believe the OIC Recommendation Engine also does that. The AI assistant can guide developers to relevant

documentation in response to their queries.

AI First

The AI first approach takes integration platforms to the next level by designing, managing, and orchestrating

integrations with learned intent. AI is not just an assistant but a key player in the integration development

lifecycle.

Generative AI, LLMs, and agent frameworks can significantly contribute to an integration platform when

adopting an AI first approach by bringing intelligence and autonomy to the integration process development

process.

LLMs can enhance natural language understanding within the integration platforms. This can be utilized for

interpreting and processing natural language queries, facilitating more user-friendly interaction with the

integration platform.

An agent framework allows for the creation of modular AI agents that specialize in different aspects of

integration, such as creating connections, data mapping, transformations, event handling, or error resolution.

Each agent encapsulates specific AI capabilities, making it easier to integrate and update individual intelligent

components within the broader integration process.

Some Tooling Examples Where AI is Being Used

 OCI Data Science for development, deployment, and monitoring of machine and deep learning models.

 OCI Generative AI for hosting large language models.

 OCI Generative AI Agent service for question-and-answer related platform based on documents.

 Oracle Digital Assistant as a virtual assistant.

Advantages of Using AI Tooling

 By leveraging AI capabilities, integration platforms can become more intelligent, adaptive, and user-friendly,

ultimately streamlining the integration process and delivering enhanced value to organizations.

 AI and ML use cases for integration platforms can significantly improve efficiency, decision-making, and

overall performance.

22 Integration in 2024 and beyond / Version 1

 Copyright © 2024, Oracle and/or its affiliates / Public

Disadvantages of Using AI Tooling

Extreme Cost

AI tooling requires a large amount of costly computing hardware. Currently, much of this cost is not visible to

AI consumers as the market grows. This cost will eventually start getting passed on to consumers, and costs

will greatly increase.

Exposing privileged data

AI learning models work best when fed a specific data set. They tend to echo back their learning data in

unexpected ways. A custom-trained language model may risk exposing privileged data to unexpecting users.

Solution Consideration

AI is being deployed to help with a lot of possible solution use cases. Some examples:

Design Integration Flows

An AI assistant can be trained on numerous integration flows and data points. By giving input as “Design Ship

Confirm Integration from WMS to Fusion Inventory,” an AI assistant could design an integration process by

creating the project, connections, lookups, and integration code for a shipment confirmation flow. This is an

AI first approach.

Intelligent Data Mapping and Transformation

An AI assistant can suggest the data transformation mapping based on trained historical data during

development and suggest if any attribute of an existing API is changed.

Chatbots and Virtual Assistants

An AI assistant can answer questions about the integration platform by implementing retrieval augmented

generation. Furthermore, it can also suggest solutions for known issues.

Anomaly Detection

The integration platform can implement machine learning models to detect anomalies in activity streams.

This can help identify unusual patterns or outliers, signaling potential issues that need attention.

Real-time Analytics

The Integration platform can implement real-time analytics using ML models to gain insights into data as it

flows through the integration platform. This can enable timely decision-making and actions based on current

information.

Automated Testing and Quality Assurance

Implement AI-powered testing frameworks that can automatically generate test cases, simulate real-world

scenarios, and identify potential issues in integration workflows. This accelerates the testing process and

ensures the robustness of integrations.

API Driven Integration Development

Introduction

API integration is the method of connecting two or more applications using APIs for exchanging data and performing

actions. APIs (Application Programming Interfaces) are sets of protocols and standards that allow different software

applications to communicate with each other. API-based integration allows applications to interact in real-time. They

can help integrate applications and services using diverse technologies to effectively integrate, helping attain greater

agility and flexibility.

23 Integration in 2024 and beyond / Version 1

 Copyright © 2024, Oracle and/or its affiliates / Public

APIs are essential to microservices-based application development. API-led integrations gained huge popularity due

to the explosion of microservice-based architectures and the “cloud-native” development paradigm.

A microservice architecture is an approach to developing applications comprising small, independent services, each

running in its own process and owning its own data. Services communicate with each other using lightweight

mechanisms, typically REST APIs. REST APIs are designed to use HTTP protocol mechanisms and are very popular

since they are simple to implement and require little specialized software.

API First Development

API first development is a development approach focused on defining, developing, and testing APIs early in the

development cycle. APIs are well-defined using API specifications (for example, Open API or Blueprint).

API governance practices, such as defining and applying standards and using API style guides, can help with the

development and deployment lifecycle of API-based integrations.

API Management and API Gateways

API management and gateway platforms provide tools for developing, designing, monitoring, testing, securing, and

analyzing APIs for organizations. Features provided by API management platforms include:

 Security

 Rate limiting

 Throttling

 Analytics, insights

 Monitoring—API monitoring

 Discovery—a developer portal for API discovery

Figure 3 - Microservice Architecture vs. Monolithic Architecture

24 Integration in 2024 and beyond / Version 1

 Copyright © 2024, Oracle and/or its affiliates / Public

API Monetization

API monetization refers to businesses charging developers or consumers for access to their APIs. This allows

businesses to generate revenue using their business assets. At its core, a platform will require integrating with a billing

provider to enable monetization.

The monetization models could be of various types, some of which are:

 Subscription model—monthly or annual recurring fee-based.

 Pay-as-you-go model—metered by usage volume.

 Data monetization—where consumers pay by access to unique datasets.

 Transaction based—per successful transaction - example payment gateways.

 The pricing could also be tiered based on usage limits, premium features, supportability, and other features

provided.

Advantages of API First Integration

Stateless

Suitable for synchronous and one-way stateless integrations.

Scalable

Independent services using stateless restful APIs allow for independent scaling.

Flexible

Ability to add destroy and modify individual services in a highly available manner and ensuring zero

downtime.

Heterogeneous

Polyglot services using different technology stacks can be effectively integrated using API-based integration

due to underlying common standards.

Highly Available and Fault-Tolerant

API integration allows for load balancing between redundant instances of individual services. Any faults can

be localized and resolved, hence minimizing the blast radius of failure.

Independent Scaling

It is generally easier to provide high availability if services are containerized and can scale independently (for

example, using a Kubernetes-based container engine).

Possibly Lower Cost and Reusable

Services with defined API contracts can be reused by various applications, reducing duplication and, hence,

development and maintenance costs.

Gateway

Use of an API Gateway to front APIs for desired features such as rate limiting, throttling, monetizing, security,

and simple transformations to be applied across an organization’s APIs.

Disadvantages of API First Integration

State

APIs can be a challenge for modeling stateful workflows as APIs are inherently stateless.

25 Integration in 2024 and beyond / Version 1

 Copyright © 2024, Oracle and/or its affiliates / Public

ACID

ACID transactionality (an all-or-nothing guarantee in a sequence of API interactions) will require additional

design or tooling support.

Lack of Transactions

Lack of transactionality risks data inconsistency between systems. These inconsistencies may require

additional batch processes for reconciliation and to restore eventual consistency.

Proliferation

API proliferation among services can lead to multiple hops and increased latency.

Troubleshooting

Troubleshooting failures involves traversing through multiple systems’ monitoring consoles. This can be

quite complex for clustered services.

Bulk Processing

API integrations are rarely suitable for bulk transactions, where it is better to consider other patterns like

batch integration.

Solution Considerations

There are many facets that should go into considering API first integration approaches and development.

Complex Monitoring

Transactions or flows span multiple services, which could be polyglot or diverse in technologies.

Complex Error Handling

As the number of services or APIs increases, there will be a corresponding increase in points of failure,

requiring more complex error handling.

Context Tracking

The integration platform provides end-to-end tracking using a common context (for example, ECID).

Orchestration

To ensure ACID transactions or SAGA-style eventual consistency, either the platform should provide a SAGA

orchestrator or this must be designed by integration developers.

Coupling

Tight coupling between applications (in contrast to event-driven architectures).

One-way

Inherently suited for synchronous and one-way communication. True asynchronous style needs additional

capabilities like events or callbacks.

Automatic Publication and Documentation

Ability to autogenerate and publish APIs for consumption.

Control

The ability for throttling, rate limiting, response caching, and load balancing to be considered during product

choice.

Monetization

API monetization capability provided by the platform.

26 Integration in 2024 and beyond / Version 1

 Copyright © 2024, Oracle and/or its affiliates / Public

No-Code and Low-Code Development Environments

Introduction

Before the era of cloud computing, enterprises relied on a middleware integration solution for managing integrations

among different on-premise applications, itself installed on-premise. Low-code solutions were often a feature of

these integration platforms; however, the low-code development environment was typically a separately bundled

client application, often only available on Windows.

On-premise middleware, which was limited to orchestrating on-premise applications, struggled to integrate cloud-

based SaaS applications. With the rapid evolution of cloud computing, there was a growing need for integration

solutions that could orchestrate on-premise systems with cloud-based applications.

This growing need led to the development of low-code browser and cloud-based integration platforms. These

integration platforms are modern solutions designed to simplify and accelerate the process of creating integrations

using prebuilt connectors and visual interfaces between on-premises systems and cloud applications. Furthermore,

these platforms offer support for integrating services across multiple cloud providers. Low-code platforms provide a

range of tools and features that allow users to create custom solutions using a drag-and-drop interface without

requiring extensive coding knowledge.

Capabilities of Modern iPaaS Platform to Support Low Code or Drag & Drop

Features

Visual Development

These platforms offer visual development environments with drag-and-drop interfaces, enabling users to

design integrations through graphical representations of workflows and data mappings. This visual approach

reduces the need for extensive coding.

Pre-Built Connectors

Low-code integration platforms typically come with pre-built connectors and adapters for popular

applications, databases, services, and technology. These connectors simplify the integration process by

providing out-of-the-box connectivity, reducing the need for custom development.

Data Mapping and Transformation

Users can visually define data mappings and transformations between different systems. This capability

allows for seamless translation of data formats and structures, ensuring compatibility between integrated

applications.

Monitoring and Analytics

These platforms offer tools for monitoring integration performance, tracking data flow, and analyzing key

metrics. Monitoring dashboards provide insights into the health and efficiency of integrated processes.

Continuous Integration and Deployment (CICD) Support

Many modern low-code platforms offer integration with CICD pipelines. This enables automated testing,

version control, and deployment of integration solutions, ensuring a seamless and continuous integration

process.

Advantages of No-Code and Low-Code

Accelerated Development

These platforms’ low-code nature significantly accelerates the development process, allowing users to create

integrations with greater speed than traditional coding methods.

27 Integration in 2024 and beyond / Version 1

 Copyright © 2024, Oracle and/or its affiliates / Public

Cost-Effectiveness

Low-code platforms empower a broader range of users, including business analysts and citizen integrators,

to participate in integration projects. This can lead to cost savings by reducing the need for hiring specialized

developers and minimizing the time and resources required for integration projects.

Flexibility and Adaptability

The visual design approach allows for easy modifications and adaptations to integration workflows.

Organizations can quickly respond to changing business requirements without lengthy development cycles.

Consistency and Reusability

Low-code platforms often include reusable components and templates, promoting consistency in integration

design. This reduces redundancy and ensures that best practices are consistently applied.

Easier Maintenance and Updates

The visual nature of low-code platforms simplifies the understanding, maintenance, and updating of

integrations. Changes can be made visually, reducing the complexity associated with traditional coding.

Disadvantages of No-Code and Low-Code

Optimization

In modern low-code systems, changing the approach to optimize performance is often difficult or impossible.

For example, controlling the flow of a loop might be optimized by understanding the specifics of the data, but

the low-code system generates in a singular way that is not performance-friendly.

Customization

In a low-code environment where everything is completely controlled for you, deeply customizing the flow is

challenging or impossible.

Incorporation Within a Wider Ecosystem

Low-code and no-code environments generally offer an all-in-one experience, and incorporating an

integration solution built in such an environment with a wider software ecosystem can prove challenging, as

it can be difficult to create and recreate an artifact in coordination with the wider ecosystem.

Lifecycle Management

Progressing a no-code or low-code built solution through the phases of a typical software lifecycle

(development, staging, production) can present a challenge, like incorporation in a wider ecosystem, above,

for similar reasons—the creation of a portable or reproducible point-in-time artifact for progression can

prove a challenge.

Solution Considerations

When considering no-code or low-code solutions the following are things to consider.

Cost-effectiveness

Evaluate the iPaaS solution’s pricing model. Some platforms charge based on usage, while others have a

subscription-based model. Consider your budget and choose a solution that offers the best value for your

organization. Also, consider buy vs. build, as in whether it’s cost-effective to build ground up using building

blocks or to buy iPaaS products.

Prebuilt Connectors

Evaluate if the prebuilt connectors are helpful for your integration needs. If not, this is about the cost-

effectiveness above.

28 Integration in 2024 and beyond / Version 1

 Copyright © 2024, Oracle and/or its affiliates / Public

Low-Code vs. Middleware Analysis

Table 2 - Low-code vs. Middleware analysis

Low-Code Platforms Middleware

Visual

Development

and

Configuration

These platforms provide visual development

environments where users can design

integrations using graphical interfaces.

Configuration settings, data mappings, and

process flows are created visually, reducing

the need for manual coding.

Traditional middleware solutions often

require manual coding and configuration

through scripts or code-based

configurations. This process can be more

time-consuming and error-prone compared

to visual development.

Prebuilt

Connectors and

Templates

These platforms come with prebuilt

connectors and templates for common

applications, databases, and services. These

pre-configured components streamline the

integration process and contribute to

automation.

Middleware solutions may lack a

comprehensive library of prebuilt

connectors, requiring developers to

manually configure connections and

adapters for each integrated system.

Deployment

Process

The user-friendly interfaces of these

platforms simplify the deployment process.

Users can deploy integrations with a few

clicks, reducing the complexity and time

required for deployment.

Middleware solutions may involve more

complex deployment processes that require

careful coordination and configuration.

Event-Driven Architecture

Introduction

Event-driven architecture (EDA) uses events to communicate between services. This is a common approach for

asynchronous real-time or near-real-time integration between services in a decoupled fashion.

EDA is also widely used in modern applications using microservices for decoupled integration.

Events usually signify milestones or anomalies in business processes. Examples include the creation of a product

item, the end of a business transaction, the abandonment of a shopping cart, a change in sales order status, or IoT

device signaling. Events may require processing to accomplish a specific business process and are handled using

event-driven integrations.

Based on the event delivery mechanism, EDAs typically follow either a Publish-and-Subscribe (Pub/Sub) or Streaming

approach.

29 Integration in 2024 and beyond / Version 1

 Copyright © 2024, Oracle and/or its affiliates / Public

Publish-and-Subscribe

The publish-and-subscribe model uses a middleware messaging platform with topics (events) that individual event

consumers subscribe to. Event producers can publish events to those event topics, and the messaging middleware

takes care of delivering the even to all subscribers. Typically, events are delivered once to a subscriber (this is often

configurable, however).

Figure 4 - Pub/Sub diagram

30 Integration in 2024 and beyond / Version 1

 Copyright © 2024, Oracle and/or its affiliates / Public

Streaming (Produce/Consume)

Streaming involves a streaming platform, where events are written to logs which are ordered within partitions.

Consumers do not subscribe to a stream but can read from any offset in a stream partition. The consumer typically

keeps track of where it has reached in the stream. The streaming platform will typically have a retention period for

messages.

Advantages of an Event-Driven Architecture

Real-Time Processing

Event-driven integration is ideal for real-time and near-real-time processing.

Asynchronous

Provides asynchronous communication.

Fan-Out

It is ideal for fan-out scenarios where multiple services are interested in a single event and can independently

process the event in parallel.

Decoupled

Ideal when integrating heterogeneous services.

Dynamic

Subscribers can be added at any time.

Figure 5 - Streaming diagram

31 Integration in 2024 and beyond / Version 1

 Copyright © 2024, Oracle and/or its affiliates / Public

Scalable

Scale up and down based on event volume as triggers. This depends on the integration platform or solution’s

agility and deployment architecture, which must be able to scale up elastically on demand.

Highly available

Multiple instances of consumers can be added to avoid a single point of failure.

Disadvantages of an Event-Driven Architecture

Sequencing

Sequence and ordering of events can be lost, especially in distributed clustered services.

Storage

It may require large persistence requirements if business processes require larger retention periods (for

example, OCI streams retain messages for 1 week, after which they are lost).

Backlog

Events buildup caused by consuming systems outages can impact end-to-end performance as consumers

may not be able to process bursts of events.

Transactionality

Due to asynchronous and stateless nature, end to end event-based integrations cannot easily provide ACID

or other transaction-like guarantees, which can lead to data inconsistency between services.

Reliability

It relies on the integrating systems’ ability to generate events reliably (e.g., avoiding duplicate events,

handling event generation failures).

Solution Considerations

Some things to consider when thinking about implementing an event-driven architecture:

 Monitoring and tracking across multiple components—the platform’s ability to provide metrics that can be

ingested to provide end-to-end tracking.

 Guaranteed message delivery vs. eventual consistency.

 Certain platforms can provide controls for exactly-once and at-least-once event delivery mechanisms.

 Complex event processing relies on the Integration tool’s ability to handle global transactions and

consistency across multiple events.

 One example is support for the SAGA pattern, where a SAGA orchestrator coordinates local transactions and

invokes compensations to handle failures.

 Event persistence—Service limits and constraints on persistence capacity can be a deciding factor when

choosing the integration platform. Constraints could include:

 Retention period.

 Payload size limitations.

 A platform that supports throttling to safeguard end systems can effectively manage scenarios like slow

consumers and event backlogs.

32 Integration in 2024 and beyond / Version 1

 Copyright © 2024, Oracle and/or its affiliates / Public

Batch Architecture

Introduction

Batch architecture refers to batch processes used for communication and data synchronization between systems. It is

a method of automating and processing multiple records collected over time as a single group. This pattern is

particularly suited for periodic or end-of-cycle processing of data. They usually involve processing large volumes of

data in batches and are suited for non-interactive, non-real-time, and long-running interactions. Batch integrations

are inherently asynchronous, with batch processes being scheduled at periodic intervals or triggered manually on-

demand. Batch architectures are also extensively used for Data Integration, where large volumes of data are

processed between applications.

Examples

Some common examples of batch use cases are:

 Monthly bill generation.

 Payroll processing.

 Supply chain fulfillment tasks.

 Data extract and periodic reports generation.

 End-of-day reconciliation of failed transactions between systems.

Tooling Examples

 Oracle Integration supports batch processing using various file, FTP, and stage operations and provides an

inbuilt scheduler for scheduling long-running batch integrations.

 Fusion SaaS—BI Publisher Extracts and Enterprise Scheduling Service (ESS) jobs.

 Other examples include:

 AWS Batch.

 Spring Batch.

Common components of batch processing systems include a scheduler, data sources, job executor, job observability,

and job queues.

Figure 6 - Batch architecture diagram

33 Integration in 2024 and beyond / Version 1

 Copyright © 2024, Oracle and/or its affiliates / Public

Advantages of Batch Architecture

 Batch integrations are suitable for processing data in large batches.

 They can provide high performance and throughput if sub-batches can be processed independently and in

parallel.

 Reconciliation-type integrations required to run overnight and during non-business hours can be modeled as

batch jobs.

 Batch integration is also suitable for bulk retry jobs of failed real-time integrations.

 Batch processing can be combined with events. For example, a file upload event can automate triggering a

file processing batch job.

Disadvantages of Batch Architecture

 Batch processing is not suitable for real-time integration between systems.

 Synchronous integrations cannot be modeled using batch processing.

 Complex processing with external dependencies makes batch processing unwieldy.

Solution Considerations

 The integration platform’s support for various data stores makes batch processing flexible, such as a

database, file system, FTP server, object storage, and streams.

 The batch tool’s ability in scheduling is useful to automate triggering of end of cycle processes.

 Error handling capabilities, such as reprocessing a subset of transactions that failed in a batch and the ability

to correct and reconcile failures in batch processing, can be crucial to ensuring data consistency.

 The tool’s ability to callback or notify when batch processing completes can enable further downstream

automation.

 For example, Oracle Fusion ESS batch processes can generate callbacks when a batch completes. These

callbacks can be integrated with event-driven integrations for automating further processing.

 Batch size restrictions and performance—check for service limits, which can be constraints on large batch

processes.

 Parallel processing within the batch—the platform’s ability to process sub-batches in parallel can provide

better performance and throughput.

 Real-time status of job execution—observability of batch systems.

 Ability to abort and retry batches—manageability and control plane features for batch.

 Ability to configure batch size and frequency based on throughput requirements—configurability to tune

batch performance and meet business SLAs.

 Ability to set priorities for certain workloads over others can be important for meeting SLAs.

Data Integration vs. Application Integration When Considering Batch Processes

As the name suggests, Application Integration is used to integrate different applications so that they can work

together to automate business processes. For example, this could follow event-based, API-based, or even batch

integrations. Whereas Data Integration is mainly focused on moving batches of data from one source to another.

Typical Data Integrations perform Extract Transform Load (ETL) operations from source to destination to keep data in

sync between them.

34 Integration in 2024 and beyond / Version 1

 Copyright © 2024, Oracle and/or its affiliates / Public

The line between batch Application Integration and Data Integration could be blurred in many use cases since both

process bulk data. Here is an example to differentiate them. A batch integration could be used to consolidate all

errored orders from an Order Management System at midnight and process them to a Fulfillment System in batches.

Whereas a Data Integration would typically extract all the orders from the Order Management System, transform

them to remove personally identifiable information (PII), and load them into a Reporting System, which would then be

used to generate daily reports and analytics insights. While the batch Application Integration process performs bulk

transaction processing, the Data Integration process is primarily tasked with bulk data transfer.

Business to Business Integration (B2B)

Introduction

B2B (business-to-business) integration has long been a common use case for Application Integration. Healthcare is a

rising use of B2B, with platforms often tailoring B2B capabilities for healthcare-specific uses.

Advantages of Using iPaaS for B2B and Healthcare

Seamless Interoperability

Supporting B2B standards in iPaaS ensures seamless interoperability between different systems and

applications used by business partners. Whether it’s EDI (Electronic Data Interchange), XML, JSON, or other

industry-specific protocols, iPaaS enables organizations to exchange data effortlessly, regardless of the

underlying technologies.

Accelerated Onboarding Process

Adhering to B2B standards simplifies the onboarding process for new partners. IPaaS platforms provide pre-

built connectors, templates, and mappings for commonly used standards, reducing the time and effort

required to establish connections and exchange data with trading partners. This accelerated onboarding

process translates into faster time-to-market and improved business agility.

Reduced Development Costs

Organizations can significantly reduce the costs associated with custom integration development by

leveraging standardized formats and protocols. IPaaS platforms offer a library of pre-built connectors and

transformation tools that abstract the complexities of B2B integration, minimizing the need for custom code

and specialized expertise. This cost-effective approach enables businesses to allocate resources more

efficiently and focus on innovation rather than reinventing the integration wheel.

Enhanced Data Quality and Compliance

B2B standards define clear guidelines for data formatting, validation, and error handling, ensuring the

integrity and accuracy of exchanged information. iPaaS platforms enforce these standards through built-in

validation rules and data transformation capabilities, reducing the risk of data errors, discrepancies, and

compliance violations. This enhances data quality, fosters trust among trading partners and mitigates

regulatory compliance risks.

Scalability and Flexibility

Supporting B2B standards in iPaaS empowers organizations to scale their integration capabilities as their

business grows and evolves. Whether it’s accommodating new partners, expanding into new markets, or

integrating additional systems and applications, iPaaS platforms provide the scalability and flexibility needed

to adapt to changing business requirements. This agility enables organizations to seize new opportunities,

enter new markets, and stay ahead of the competition.

35 Integration in 2024 and beyond / Version 1

 Copyright © 2024, Oracle and/or its affiliates / Public

Improved Visibility and Control

IPaaS platforms offer comprehensive monitoring, tracking, and analytics capabilities that provide real-time

visibility into B2B transactions and workflows. Organizations can monitor the status of data exchanges, track

performance metrics, and proactively identify issues or bottlenecks in the integration process. This visibility

enhances control over B2B operations, enabling organizations to optimize processes, resolve issues

promptly, and meet SLAs (Service Level Agreements) effectively.

Disadvantages of Using iPaaS for B2B and Healthcare

Complexity of Integration

B2B and healthcare ecosystems often involve a multitude of applications, systems, and stakeholders.

Integrating diverse systems with varying data formats, protocols, and standards can be complex. While iPaaS

simplifies integration tasks, configuring and managing integrations across different entities and

environments may still require significant effort and expertise.

Support for All B2B Document Standards

Many iPaaS support commonly used business exchange documents like EDI or HL7. If a specific B2B

document standard is needed that is not supported by the iPaaS platform, then specified B2B Gateway

software needs to be adopted.

Data Security and Compliance Concerns

B2B and healthcare industries deal with sensitive data such as personal health information (PHI) and financial

records. Using iPaaS may raise concerns about data security and compliance with regulations like HIPAA

(Health Insurance Portability and Accountability Act), GDPR (General Data Protection Regulation), and other

industry-specific standards. Ensuring that the iPaaS platform meets stringent security requirements and

complies with relevant regulations is essential.

Solution Considerations for iPaaS B2B Capabilities

B2B integration involves the exchange of data between businesses, typically facilitated through electronic data

interchange (EDI), APIs, or other integration methods. iPaaS platforms streamline B2B integration by providing

prebuilt connectors, data mapping tools, and workflow automation capabilities. This enables healthcare organizations

to efficiently exchange data with partners such as insurers, suppliers, and regulatory agencies.

Key Features of iPaaS Platforms Supporting B2B Integration

Connectivity

iPaaS platforms offer a wide range of connectors and adapters to seamlessly integrate with various B2B

systems and protocols, including EDI, AS2, SFTP, and more.

Data Transformation

These platforms facilitate the transformation of data between different formats and standards, ensuring

compatibility between disparate systems used by different organizations.

Workflow Automation

iPaaS platforms enable the automation of B2B processes, such as order processing, invoicing, and inventory

management, reducing manual effort and improving operational efficiency.

Monitoring and Management

Advanced monitoring and management capabilities allow organizations to track the status of B2B

transactions in real-time, identify bottlenecks, and ensure compliance with service level agreements (SLAs).

36 Integration in 2024 and beyond / Version 1

 Copyright © 2024, Oracle and/or its affiliates / Public

Solution Considerations for iPaaS Healthcare Support Capabilities

Compliance with healthcare standards is essential for ensuring the security, privacy, and interoperability of patient

data. IPaaS platforms support a variety of healthcare standards, including HL7, FHIR, DICOM, and HIPAA, among

others.

Below are the capabilities that iPaaS should provide to support healthcare standards integration:

HL7 and FHIR Integration

iPaaS platforms provide native support for HL7 and FHIR standards, allowing healthcare organizations to

exchange clinical and administrative data seamlessly.

DICOM Integration

For medical imaging systems, iPaaS platforms offer DICOM support, enabling the integration of Picture

Archiving and Communication Systems (PACS) with electronic health record (EHR) systems and other

healthcare applications.

HIPAA Compliance

IPaaS platforms implement robust security measures and data encryption techniques to ensure compliance

with the Health Insurance Portability and Accountability Act (HIPAA) regulations, safeguarding patient data

during transit and storage.

Interoperability

By supporting healthcare standards, iPaaS platforms facilitate interoperability between disparate systems,

enabling healthcare providers to access and exchange patient information securely across different care

settings and organizations.

G. A Case Study—Fusion Applications Social Network

Integration

Case Study Overview

This case study explores a new Oracle project that aims to connect Oracle Fusion Applications with social

collaboration platforms, addressing the need for improved enterprise collaboration and communication. The study

outlines the process from identifying integration challenges to implementing a solution that leverages cloud

platforms and low-code environments. It aims to demonstrate how modern integration strategies can be applied to

enhance organizational efficiency and collaboration. The study sets the stage for a deeper dive into the specific

challenges, techniques, and outcomes of the project while also reflecting some broader themes of the 2024

integration landscape.

The focus of this case study is on the integration of Oracle Fusion Applications and Oracle PaaS for middleware with a

designated social collaboration platform. However, the integration strategies and methodologies discussed are

designed to be widely applicable. Depending on specific needs and available technologies, this framework can be

adapted to interface with various other enterprise applications, middleware layers, and social platforms. This

adaptability demonstrates the potential for universal application across different technological environments,

highlighting the scalability and versatility of the integration solutions deployed in this project.

Project Introduction

The need for effective collaboration across diverse platforms has become increasingly evident in the current

enterprise landscape. Organizations are looking for innovative ways to enhance communication around critical

business processes (aka, Business Objects) like sales opportunities, purchase orders, purchase requisitions, contracts,

37 Integration in 2024 and beyond / Version 1

 Copyright © 2024, Oracle and/or its affiliates / Public

and sales orders. This challenge has prompted the exploration of integrating social platforms with core business

applications to improve collaboration.

Recognizing this need, the A-Team embarked on a strategic initiative to bridge the gap between Oracle Fusion

Applications and the dynamic world of social collaboration. This initiative led to the formation of the Oracle Fusion

Applications Social Network Integration (FASNI) project. The following case study offers a comprehensive overview of

the FASNI example, detailing the journey from identifying the challenge to implementing a solution that significantly

enhances organizational collaboration and communication.

Problem Statement

The investigation for enhanced collaboration within the enterprise sector has illuminated a pivotal gap: insufficient

integration between core business applications and contemporary social collaboration tools. The lack of this

integration has surfaced several technical and operational challenges that impede effective communication and

collaboration around critical Business Objects:

Communication Method Inefficiencies

Current communication methods, notably email and standalone messaging platforms, need to support the

agile and interactive dialogue essential for quick decision-making in business operations. These traditional

methods introduce delays, negatively affecting operational efficiency and business responsiveness.

Communication Channel Fragmentation

The need for integrated, real-time communication channels or APIs to connect core business applications

with collaboration tools leads to fragmented communication flows. This fragmentation creates coordination

challenges and information exchange barriers among critical stakeholders, undermining the collaborative

effort and creating operational inefficiencies.

Barriers to Access and Participation

Technical and general barriers, such as complex authentication processes and the absence of integrated

access controls or data-sharing capabilities, prevent stakeholder participation in crucial discussions. Without

seamless integration to facilitate easy access to information and discussions, the full potential for stakeholder

engagement and contribution is not possible, slowing decision-making and innovation.

The initiative to integrate Oracle Fusion Applications with a broader ecosystem of social collaboration platforms is

designed to address these challenges. It aims to create a unified, efficient, and accessible framework for

communication and collaboration. FASNI will provide a clean, efficient, and straightforward collaborative reference

implementation for this integration.

Objectives

The FASNI project aims to meet comprehensive technical and operational goals:

1. Cost Efficiency—Deliver an integration solution that utilizes existing financial investments to avoid additional

expenses or licensing costs for customers.

2. Interface Extension—Enhance the user interface capabilities, exposing conversations for relevant business

objects within the native Fusion UI.

3. Access Control Integration—This involves extending Fusion Applications’ access control lists into the

integration layer, ensuring users have appropriate and secure access rights.

4. Universal API—To provide a standard, social collaboration-agnostic API that allows the adoption of various social

media platforms.

38 Integration in 2024 and beyond / Version 1

 Copyright © 2024, Oracle and/or its affiliates / Public

5. Performance Excellence—To ensure the integration operates at a level that meets or surpasses the performance

of the current Fusion Applications UI.

6. Configuration Over Customization—To minimize reliance on custom code by favoring a configuration-first

approach, simplifying the initial setup and ongoing adaptability.

7. Business Object Updates—To capture changes to Oracle Business Objects and push those changes to the

conversation occurring on the social media platform.

8. Inclusive Collaboration—To enable critical stakeholders who are not direct users of Fusion Applications to

participate fully in conversations, making the collaborative process more inclusive and broadening the scope of

engagement.

9. Open-Source Framework—To facilitate independent customer implementation by offering the integration

solution as an open-source distribution.

By accomplishing these objectives, the FASNI project is positioned to expand and automate enterprise collaboration,

establishing an adaptable, secure, and inclusive environment that aligns with current and future business needs.

Methodology

The FASNI project’s methodology was rooted in a comprehensive analysis of interaction patterns and preferences

regarding collaboration on Oracle Business Objects—logical business entities that encapsulate key data, relationships,

and business logic pertinent to enterprise functions such as sales, human resources, and finance. By focusing on how

different stakeholders, including customers, employees, and partners, engage with these entities, the project ensures

that the integration solution is not only technologically sound but also universally applicable and aligned with the

diverse needs and usage scenarios of all users. The following steps outline the methodology:

1. Customer Engagement Analysis—Conduct a detailed review of the collaboration habits of top-tier customers

who actively engage in discussions related to Business Objects.

2. Platform Preference Survey—Survey which social platforms are company standards for these customers to

identify a target social platform with which to integrate.

3. Technological Inventory—Compile an inventory of existing products and services these customers use,

assessing how these could be leveraged or integrated with potential social collaboration platforms.

4. Requirement Gathering—Engage with SaaS Product Managers (PMs) through interviews and questionnaires to

capture specific functional and technical requirements, focusing on usability, performance, and security

expectations.

5. Feasibility Study—Analyze the compatibility and integration potential of various social platforms with Oracle

Fusion Applications, considering API availability, extensibility, and compliance with Oracle’s security standards.

6. Technology Selection Criteria—Establish criteria for selecting the integration technology, including ease of

implementation, adaptability, support for open standards, and alignment with Oracle’s existing technological

ecosystem.

7. Pilot Testing—Conduct pilot tests with a subset of Business Objects on the selected social platform to validate

the integration approach and refine the solution based on feedback.

8. Evaluation and Final Selection—Evaluate the outcomes of the pilot tests against the established criteria and PM

feedback to make an informed decision on the most appropriate combination of social platform and integration

technology for the FASNI project.

By adhering to this systematic approach, the FASNI project aimed to develop an integration solution that was

customer-centric, scalable, and technologically aligned with the evolving landscape of enterprise collaboration. This

39 Integration in 2024 and beyond / Version 1

 Copyright © 2024, Oracle and/or its affiliates / Public

ensured that the selected platforms and technologies met the current demands of Oracle Fusion Applications users

and positioned the system to adapt to future challenges and advancements in social collaboration tools.

Solution Overview

Based on the results of a thorough analysis of customer preferences and existing licenses, the following key decisions

were incorporated into the solution design:

1. Choice and Adoption of Microsoft Teams—Microsoft Teams was selected as the social platform for integration

due to its predominant choice among customers for both internal and external collaboration. Its widespread

enterprise adoption and the capability to include external stakeholders in discussions make it the ideal

collaborative platform for integration with Oracle Fusion Applications. This choice aligns with the objective of

inclusive collaboration, enabling participants to drive collaborative efforts effectively.

2. Integration with Oracle Integration Cloud (OIC)—OIC was chosen as the integration layer due to its existing

licensing among customers and for its robust capabilities which serve the objectives of cost efficiency and

performance excellence. The integration optimizes existing investments and includes:

• The inclusion of Visual Builder Cloud Service (VBCS) allows for an extended UI that is both functional

and intuitive, mirroring the familiar Fusion Applications experience.

• Support for Lookups aids in a configuration-first approach, simplifying the customization process

without extensive coding.

• Pre-built adapters for Microsoft Graph APIs and Fusion Applications REST APIs, facilitating efficient

data exchange and integration.

• Event handling capabilities to capture and respond to business object changes, keeping the

collaborative environment synchronized with business operations.

3. Social Platform-Independent API—To respond to the objective of a universal API, the solution includes a

platform-agnostic API that supports the integration of various social media platforms, providing adaptability to

meet current and future collaboration needs.

4. Fusion Applications Callback for Authorization—This aspect of the solution directly addresses the objectives of

access control integration and security. The callback mechanism ensures that user access to business objects

within the social platform is strictly governed by Fusion Applications’ access control lists, upholding data integrity

and compliance.

5. Open-Source Framework—The solution’s open-source framework reflects its objective to facilitate independent

customer implementation. It empowers customers to customize and extend the integration, fostering a sense of

ownership and adapting to unique business requirements.

By carefully aligning each solution element with the project’s objectives, the FASNI project illustrates a clear roadmap

from goals to implementation. It showcases a thoughtfully crafted solution that addresses the current challenges of

enterprise collaboration and is designed to be scalable and forward-looking. Detailed guidelines and the architectural

blueprint can be found at https://www.ateam-oracle.com/post/fusion-applications-and-microsoft-teams-

integration-architecture, providing insights into the various components of the sample and links for more detail.

Relationship With the Whitepaper Trends

To correlate the FASNI case study with the integration trends mentioned in this whitepaper, we highlight how the

project aligns with the latest industry trajectories and technological advancements. Let’s explore the relevant trends

from the whitepaper and relate them to the aspects of the FASNI case study.

1. Application Integration Pillar—The FASNI project’s integration of Oracle Fusion Applications with Microsoft

Teams is a prime example of Application Integration, where two distinct software services are linked to enhance

collaboration and workflow continuity.

https://www.ateam-oracle.com/post/fusion-applications-and-microsoft-teams-integration-architecture
https://www.ateam-oracle.com/post/fusion-applications-and-microsoft-teams-integration-architecture

40 Integration in 2024 and beyond / Version 1

 Copyright © 2024, Oracle and/or its affiliates / Public

2. iPaaS Utilization—Utilizing OIC aligns with the trend toward cloud-based integration platforms. Per the

whitepaper, iPaaS is key to modern integration, offering components like APIs and middleware for efficient

communication between disparate applications.

3. Low Code Solutions—Utilizing OIC and the FASNI initiative’s preference for a configuration-first approach over

extensive custom coding corresponds with the move towards low-code platforms. This resonates with the

industry’s pivot to more accessible solutions that enable rapid development and deployment.

4. API-First Development—The whitepaper discusses the significance of API-first development, and FASNI’s

creation of a social collaboration-agnostic API aligns with this trend. It emphasizes a standards-based,

interoperable approach critical for flexible and scalable integrations.

5. Security and Compliance—According to the whitepaper, FASNI’s use of a callback mechanism to Oracle Fusion

Applications for user authorization ensures that the integration adheres to strict security and compliance

standards, a trend that is becoming increasingly important.

6. Multi-cloud and Hybrid Integrations—Although FASNI’s current scope involves Oracle products and Microsoft

Teams, the industry is moving towards multi-cloud strategies. The FASNI API’s platform-agnostic nature

positions it well for future expansion into multi-cloud environments.

7. Prebuilt Integrations and Connectors—FASNI leverages OIC’s pre-built adapters for Microsoft Graph APIs and

Fusion REST APIs, which exemplifies the whitepaper’s mention of the advantage of prebuilt connectors and

adapters for quick and efficient integration.

By drawing these connections, we can position the FASNI project as a forward-thinking example that embodies

several of the key integration trends of 2024, emphasizing its relevance and strategic foresight within the industry’s

future trajectory.

In Summary

The FASNI project illustrates a targeted response to the integration needs within the enterprise software domain. The

initiative directly addressed the identified collaboration challenges by connecting Oracle Fusion Applications with a

collaborative platform, offering a practical solution rooted in current usage trends and customer feedback.

As highlighted by the alignment with the integration trends discussed in the accompanying whitepaper, FASNI

embodies the latest industry trajectories and technological advancements. The project’s utilization of iPaaS, low-code

solutions, and an API-first approach reflects a commitment to current and future industry standards, ensuring its

position at the forefront of integration technology. This strategic foresight not only enhances the project’s immediate

effectiveness but also solidifies its role as a model for future integration efforts across various technological

landscapes.

Furthermore, the project’s emphasis on configuration over customization, coupled with its open-source distribution

and strict adherence to security and compliance standards, supports the broader move towards accessible, secure,

and sustainable technology practices. The inclusion of stakeholders outside Fusion Applications’ core user base into

collaborative processes signifies progress towards more inclusive and comprehensive communication strategies

within organizations.

In summary, the outcomes of the FASNI project have significantly bolstered the collaborative capabilities of Oracle

Fusion Applications users, showcasing a practical implementation of integration technology that is aligned with both

current needs and future possibilities.

41 Integration in 2024 and beyond / Version 1

 Copyright © 2024, Oracle and/or its affiliates / Public

H. Conclusion

Integration in 2024 is a thriving software development domain. There are many approaches to solving a problem,

with tooling to suit many different tastes and enterprise development approaches. There is a vibrant future for

integration, with many future paths and exciting new technologies poised to make it an even richer and more useful

tool.

The intent of this whitepaper is to arm the reader with the knowledge to choose the most suitable approach to solve

their integration challenges. The deep dive sections of Application Integration and Process Integration provide the

reader with guidelines to choose the iPaaS or Integration platform for their integration requirements. Further in the

Development and Deployment trends, we saw the various choices of integration patterns and deployment

architectures to not only build solid integrations for today but also make them future-ready by providing a glimpse

into where the integration trends are evolving in the future. Finally, the FASNI case study was designed to provide a

real business use case that ties the concepts discussed in this whitepaper and applies them as a methodology for

architecting good integration solutions.

42 Integration in 2024 and beyond / Version 1

 Copyright © 2024, Oracle and/or its affiliates / Public

Connect with us

Call +1.800.ORACLE1 or visit oracle.com. Outside North America, find your local office at: oracle.com/contact.

 ateam-oracle.com facebook.com/oracle twitter.com/oracle

Copyright © 2024, Oracle and/or its affiliates. This document is provided for information purposes only, and the contents hereof are subject to change without notice. This document is

not warranted to be error-free, nor subject to any other warranties or conditions, whether expressed orally or implied in law, including implied warranties and conditions of merchantability

or fitness for a particular purpose. We specifically disclaim any liability with respect to this document, and no contractual obligations are formed either directly or indirectly by this document.

This document may not be reproduced or transmitted in any form or by any means, electronic or mechanical, for any purpose, without our prior written permission.

Oracle, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

	Purpose Statement
	Disclaimer
	Revision History
	Table of Contents
	List of Figures and Tables
	A. Overview
	The Structure of This Document
	About the Authors

	B. Three Main Pillars of Integration
	Application Integration
	Data Integration
	Process Integration
	Other Areas: RPA—Robotic Process Integration
	The Three Pillars and Our Focus

	C. The History of Integration and the Trajectory in 2024
	History
	Manual Integration
	Middleware
	Messaging and Busses
	Low Code
	AI as a Helper
	AI Driven

	D. Application Integration—A Deeper Dive
	Approaches to Application Integration
	Integration Platform (iPaaS)
	Key components of iPaaS
	Upcoming Developments in iPaaS and Application Integration
	Oracle Integration Cloud

	Build It Yourself
	Serverless Platforms
	Serverless and Integration
	Containerization
	Containers and Integration
	Advantages of Build It Yourself Integration Solutions
	Disadvantages of Build It Yourself Integration Solutions

	E. Process Integration—A Deeper Dive
	Key Components in Process Integration
	Upcoming Developments in Process Integration
	Oracle Process Automation Cloud (OPA)

	F. Trends and Themes in Integration
	Deployment Trends
	Prebuilt Integrations
	Introduction
	Benefits
	Features in a Modern iPaaS Platform for Prebuilt Support
	Advantages of Prebuilt Integrations
	Disadvantages of Prebuilt Integrations

	Hybrid and Multi-Cloud Integrations
	Introduction
	Hybrid Cloud and Multi-Cloud Environments
	Challenges
	Capabilities
	Benefits

	Development Trends
	AI and Machine Learning
	Introduction
	AI Assistants and Generative AI
	Some Tooling Examples Where AI is Being Used
	Advantages of Using AI Tooling
	Disadvantages of Using AI Tooling
	Solution Consideration

	API Driven Integration Development
	Introduction
	API First Development
	API Management and API Gateways

	API Monetization
	Advantages of API First Integration
	Disadvantages of API First Integration
	Solution Considerations

	No-Code and Low-Code Development Environments
	Introduction
	Capabilities of Modern iPaaS Platform to Support Low Code or Drag & Drop Features
	Advantages of No-Code and Low-Code
	Disadvantages of No-Code and Low-Code
	Solution Considerations

	Event-Driven Architecture
	Introduction
	Publish-and-Subscribe
	Streaming (Produce/Consume)
	Advantages of an Event-Driven Architecture
	Disadvantages of an Event-Driven Architecture
	Solution Considerations

	Batch Architecture
	Introduction
	Examples

	Tooling Examples
	Advantages of Batch Architecture
	Disadvantages of Batch Architecture
	Solution Considerations
	Data Integration vs. Application Integration When Considering Batch Processes

	Business to Business Integration (B2B)
	Introduction
	Advantages of Using iPaaS for B2B and Healthcare
	Disadvantages of Using iPaaS for B2B and Healthcare
	Solution Considerations for iPaaS B2B Capabilities
	Key Features of iPaaS Platforms Supporting B2B Integration

	Solution Considerations for iPaaS Healthcare Support Capabilities

	G. A Case Study—Fusion Applications Social Network Integration
	Case Study Overview
	Project Introduction
	Problem Statement
	Objectives
	Methodology
	Solution Overview
	Relationship With the Whitepaper Trends
	In Summary

	H. Conclusion

